Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain.
نویسندگان
چکیده
The precursor of Gag protein (Pr55(Gag)) of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind d-myo-phosphatidylinositol 4,5-bisphosphate (PIP2). The N-terminus of Pr55(Gag), the MA domain, plays a critical role in the binding of Pr55(Gag) to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate (PIP5) derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding properties. The inositol moiety was synthesized starting with myo-inositol and assembled with a hydrophobic glycerol moiety through a phosphate linkage. The Kd value for MA-binding of the PIP5 derivative 2 (Kd = 0.25 μM) was the lowest (i.e., highest affinity) of all derivatives, i.e., 70-fold lower than the Kd for the PIP2 derivative 1 (Kd = 16.9 μM) and 100-fold lower than the Kd for IP6 (Kd = 25.7 μM), suggesting the possibility that the PIP5 derivative blocks Pr55(Gag) membrane binding by competing with PIP2 in MA-binding.
منابع مشابه
Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding.
Interactions between arrestins and phosphoinositides have been reported to regulate multiple membrane-associated signaling and trafficking events including clathrin-mediated endocytosis and light adaptation in Drosophila. Arrestins have been proposed to have nuclear and cytosolic functions as well, although the ligand dependence of these functions has not been investigated. Here we characterize...
متن کاملSynthesis and Molecular Docking Studies of 2-arylideneindan-1,3-diones Derivatives as an Inhibitor of 17β-hydroxysteroid Dehydrogenase Type 1
Due to the drawbacks of applying catalysts in the synthesis of α,β-unsaturated structure units and the importance of these materials, electrochemistry has been introduced as an efficient alternative.Therefore, herein a high-yield synthesis of 2-arylideneindan-1,3-diones is proposed. The procedure is carried out in propanol, using electrons as a green catalyst for generating propanol anion...
متن کاملDesign, Synthesis, Molecular Modeling, In Silico ADME Studies and Anti-HIV-1 Assay of New Diazocoumarin Derivatives
Some new diazo incorporated coumarin compounds were designed and synthesized to evaluate their anti-HIV activity. Overall, compounds were active against HIV at 100 μM. Additionally, no cytotoxic effect was observed at this concentration. The compound with 4-chlorobenzyl group indicated the best anti-HIV activity (52%). Docking studies using the later crystallographic data available for PFV inte...
متن کاملSynthesis, Computational Studies and Anticonvulsant Activity of Novel Benzothiazole Coupled Sulfonamide Derivatives
We report herein the synthesis of ¾ substituted benzene sulfonamides linked via phenyl ring to a benzothiazole moiety. The title compounds in the two series namely N-(4-(benzothiazole-2-yl) phenyl) 4- substituted benzene sulfonamides and N-(4-(benzothiazole-2-yl) phenyl) 3- substituted benzene sulfonamides were synthesized by condensing 2-(3/4-aminophenyl) benzothiazole with various...
متن کاملStructural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly.
During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 12 27 شماره
صفحات -
تاریخ انتشار 2014